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Abstract

A review of recent work by the author in the area of classical equation-of-state
development is presented. The scope of the review extends from equation-of-state stability
constraints to afrequency-based, closed-form f!quation-of-state formulation incorporating
the effects of non-nearest lattice neighbors.

Introduction

In recent decades, the development of classical frequency-based equation-of-state
(EOS) methods [1-5] has fallen out of favor as more modem (e.g., quantum) approaches
have taken hold. Nonetheless, classical approaches continue to offer meaningful results
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2 Steven B. Segletes

that are straightforward to obtain for Griineisen materials, wherein r, the Griineisen
function, is a function of volume only, such that r = T'(V).

Thermodynamic constraints
The use of classical thermodynamics, in and of itself, permits a great deal of

knowledge to be ascertained about permissible EOS forms. Early work by the author in
the area [6-8], for example, employed classical thermodynamics to ascertain interrelated
constraints on the behavior of the Griineisen function and Hugoniot. These constraint
relations are typically the thermodynamic consequence of a mechanical constraint. As an
illustration, the constraint of the post-normal-shock velocity to subsonic values (a well
known mechanical constraint) has a (less known) thermodynamic consequence [6] that
T'(V) < 2V/(Va-V). That a number of production computer "wave-propagation" codes were
found to be in violation of this and other constraints served only to highlight the
importance of the functional coupling between a material's mechanical (i.e., cold pressure
or Pc) behavior and its thermal behavior as epitomized by r.

Pursuing this macro-thermodynamic approach, the author [9] demonstrated the
ability to compose thermomechanically coupled EOS forms in which, for example, the
internal energy along the Hugoniot was given as a direct function ofr. Formulations were
based solely on the requirement that the EOS avoid various modes of thermodynamic
instability, as these constraint violations were called. These EOS forms were not specific
to a particular material, but were rather families of equations of state that were guaranteed
to avoid various constraint violations.

Thermomechanicallinkage
It is no accident that historical efforts to understand aspects of the EOS for

crystalline solids settled upon the characteristic lattice frequency as the key
variable [1-5, 10]. Excellent background of this topic is given by Slater [1]. On the
thermal side of the p;:oblem, key variables are the Griineisen function, T'(V), which relates
changes in pressure p and energy E at constant volume V [eqn (1)], and specific heat,
which relates chang~s in energy and temperature T at constant volume [eqn (2)]. Early
work in specific heats by Born and von Karman [10], Einstein, and Debye established the
link between specific heat and characteristic temperature e [eqn (3)] which, in turn, was
shown proporiional to a characteristic vibrational frequency of the lattice w[eqn (4)]. The
Griineisen function, in turn, was also shown to be related to w [eqn (5)].

Since the characteristic vibrational frequency is composed of an aggregation of
many vibrational modes, the question arose as to the distribution of frequency modes that
compose the aggregated spectrum. As with many good models, reasonable assumptions
were made, some better than others. For modeling purposes, Einstein assumed all
component Wi were equal to the aggregate w. While allowing for different component
frequencies, Griineisen assumed a similarity of behavior by way of dw;!dV = dw/dV.
Debye assumed a particular parabolic distribution on the frequency spectrum. It was, no
doubt, the desire to better characterize the vibrational spectrum that has led researchers in
the field to develop newer spectral methods. What is generally lost, however, with the
added detail is the ability to capture results in closed form. Retaining the historical
premise, then, that an aggregated vibrational frequency spectrum composed of only one or,
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at most, several vibrational modes can adequately characterize the complete vibrational
frequency spectrum of the lattice (and thus the thermal behavior), we turn to the
mechanical side of the problem.

From vibration theory, the second derivative of the lattice energy potential, Epot, with
respect to a characteristic dimension, ;, provides a measure of the bulk mechanical
stiffness of the lattice. As with any mechanical stiffness, there is an associated frequency,
which we herein call the volumetric frequency myol, as it derives from the lattice potential,
which characterizes the volumetric (i.e., bulk) behavior of the lattice [eqn (6)].

Summarizing the relations that link the thermal to the mechanical side of the
problem,

(dEldp)v = Vir , (1)

(dEldT)v = Cv ~

(2)

Cv = Cv(8IT) ,

(3)

8=hmlk ,

(4)

r = -(Vim) dmldV ,

(5)

d2Epotld;2 ~(mYaJ;!Y ,

(6)

where hand k are Planck's and Boltzmann's constants, respectively. The ;?c, representing
d;ldA in eqn (6), is a dimensional conversion metric necessary when the characteristic
dimension ; has units other than length (e.g., Slater's theory [1D. The fundamental
problem, constituting the classical approach to frequency-based equations of state, is this:
(1) how to formulate the characteristic vibrational frequency m; and (2) how to relate the
vibrational m to the volumetric frequency mval. In all of the historical models to be
discussed [1-3], the volumetric frequency mval is considered indistinguishable from, and
thus equal to, the vibrational frequency co. This point will be addressed in greater detail in
a subsequent section, and represents a significant point of departure for the current work.

Slater [1] accomplished the calculation of the characteristic vibrational frequency m
by relating the elastic wave speed to both the characteristic frequency and the volumetric
compressibility. In so doing, volume becomes the characteristic lattice dimension; by
which mval is calculated in eqn (6) (thus, ;?c ~y2l3). As a result, r = -2/3 -(VI2)pc"lpc' was
obtained by Slater, where the primes denote ordinary differentiation with respect to the
specific volume, V.

Dugdale and MacDonald [2] differed with Slater's choice of V as the characteristic
dimension; in eqn (6). They argued that the spring stiffness from which COyol derives must
be based on a force-displacement and not a pressure-volume relationship. To prove the
point, they showed how the hypothetical use of a harmonic lattice "spring" failed to
produce the required r= 0 in the Slater model. Though deriving results in terms of
pressure (not force), the crux of their modification, as has been shown [11], was the
selection of the lattice spacing A - VII3 as the characteristic dimension; governing the
volumetric frequency (thus, ;?c ~ 1). By effecting this change alone, they obtained a form
different from that of Slater, given by r = -1/3 -(V!2)(PcV2/J )"/(P, V2(3)'.
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Pastine [3] attempted to extend the prior work. As before, volumetric and
vibrational lattice frequencies were still assumed indistinguishable. However, he
incorporated a 3-D lattice so as to combine three lattice vibrational modes (one
longitudinal "L" and two transverse "T") into the formulation of ill For some reason,
though, Pastine chose to aggregate the modal contributions by way of r = r L + 2rT, rather
than by the accepted form of 31m3 = l/cth3 + 2lml, as given directly by BriHouin [12] or
obtainable from Slater [1].

Plendl [5], while not developing an EOS directly, presents extensive and interesting
methods of relating various material constants to the characteristic frequency of the lattice
[essentially extending the ro-based equation set of eqns (1)-(6) to many additional material
properties]. He shows how the characteristic frequency that matches vast experimental
data for many materials is identical to the "frequency of the center of gravity" of the
vibrational spectra, a concept he pioneered.

Solving the Griineisen EOS [13]
The Griineisen equation of state, which follows from the assumption that r is

independent of temperature, may be expressed in a variety of ways, but amounts to
Q

p - Pref = (E - E,ef )llfI . (7)

In this equation, lfI represents [7, 8] the convenient grouping Vir, while P and E are the
pressure and specific internal energy, respectively. The reference functions (subscript
"ref") are states along some known reference curve of compression, such as an isotherm,
isentrope, or Hugoniot, for example.

Since Pref, Eref, and lfI are functions of volume alone (whereas P and E are functions
of volume and temperature), the mathematical solution to the Griineisen EOS, eqn (7),
requires, for a specified G( V)=pref"lfl - E,ef and lfI, the determination of P and E that satisfy

p"lfI - E = G(V) . (8)

Along the zero temperature (cold) isotherm, the dependent variables, P and E, are related
by pc = -Eo', and so one obtains from eqn (8) an ordinary differential equation for Ec, in V:

(9)

The solution to this differential equation would give the interatomic energy potential of the
lattice. Without knowing, a priori, the G and V' functions for a given material, the
particular solution to eqn (9) cannot be obtained.

However, a complementary solution to this equation, corresponding to G(V) = 0, is
obtainable, with the use of eqn (5), expressible in the current context as

a/lw=-l/lfl . (10)

With this added equation, the complementary solution to the homogeneous Griineisen
cold-energy function, eqn (9) with G =0, was determined [13] as

(11 )
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where A is an integration constant. This solution is independent of the functional fonn for
If/(and thus independent of the form for r).

For the general case, where G =I- 0, the particular solution to the differential eqn (9)
will, naturally, be more complicated. Even in the general case, however, the
complementary solution to a differential equation is part of the particular solution, and will
explicitly appear in the particular solution unless the boundary conditions to the problem
are such that the coefficient associated with the complementary term is identically zero.
On this basis, it was surmised [13] that OJ might appear explicitly as a term in the zero
temperature energy potential for Griineisen materials. Such a hypothesis was quite
reasonable, when it was noted, from eqn (4), that OJ is proportional to e, which constitutes,
in totality, the zero-temperature energy potential in both the Einstein and Debye equations
of state for crystalline solids (i.e., Ec equals 3/2 NkB and 9/8 NkB, respectively, where N is
the number of atoms and k is Boltzmann's constant). Thus, the Einstein and Debye
potentials are both complementary solutions to the Griineisen EOS.

To make the jump from the exact complementary solution given by eqn (11) to an
hypothesized particular solution, the author [13] considered the so-called universal EOS
form of Rose et at. [14]. While not based on a vibrational approach, the universal EOS
nonetheless exhibits a commonality shared over many materials, taking the form

(12)

where Epe!, the energy potential of the lattice, equals the cold energy, Eo shifted by a
constant binding energy Eb, such that Epe! = Ec - Eh. The parameter a is a geometrical
variable, linearly related to the lattice spacing through a parameter 17 by

a=T](A/Ao-l) . (13)

In hypothesizing a particular solution to eqn (9), the author [13] made two conjectures:
(1) that the 0.05 term in the universal potential represented a correction for the fact that the
a variable was defined to be linear with lattice spacing; and (2) that, given the
complementary solution of eqn (II), OJ would appear in the energy potential as an explicit
term.

Thus, in accordance with the first conjecture, the following form was explored:

Eptll =-Eh(1+ f)exp(-f) , (14)

where f would, unlike a, be some frequency- related variable that was nonlinear with
lattice spacing. To satisfy the second conjecture, there are but three possibilities: either
OJ~ exp(-f), OJ~.rexp(-f), or OJ goes as the sum of these two. The second form is
implausible, as it fails to meet necessary boundary conditions, and the third form
essentially produces the complementary solution. For the remaining OJ~ exp(-f) form
then, the author determined a form for G, G = DjOJ- D2, that would, when solving eqn (9),
yield the following result:

(] 5)

This solution to eqn (9), based on the possibility that.r = -In( OJ/OJo), can be expressed in
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the modified universal form of eqn (14) with appropriate selection of constants A, D1, and
D2•

In an effort, primarily to fit the data, but also to accommodate the "definite
frequency" concept espoused by Plendl [4, 5], the author relaxed the fitting form to permit

f=-Kln((j)/(j)o), where K isa material-based constant. With this generalization onf, the
cold curve of eqn (15) took the form

(16)

(17)

with the associated cold pressure as

Pc = EbK2 (m/(j)O)K In((j)/(j)o) .
lj/

With these functions as the reference curve, the Mie-Griineisen EOS, eqn (7), becomes

(18)

The parameter K, on the order of unity, is given by

(19)

where Co is the bulk sound speed of the material. K is defined so as to properly match the
curvature of the potential at the alrbient condition.

Implicit in the form of eqn (16), however, is the notion that the vibrational frequency
of the lattice, (j), asymptotes to zero only as the lattice separation becomes infinite,
whereupon the cold energy asymptotes to the binding energy of the lattice. In the absence
of a lattice-vibration analysis, the flaw in this notion was not yet apparent to the author.
Nonetheless, even with this flaw, and by assuming a simple linear relation in V for the lj/
variable (shown to satisfy basic thermodynamic stability requirements [6]), experimental
cold- and shock-compression data were well fit by the model for seven metals, out to
several megabars of pressure.

Observations on the theory
Having met with this initial success, the author and a colleague began to explore the

implications and consequences of the model. Segletes and Walters [15] made several
intriguing analytical observations, merely by assuming a power-law behavior to the lj/
function, lj/= V" in preference to the linear behavior previously assumed [13].

Primarily they found, by starting with eqn (17) and ignoring higher-order terms, that
the model of Slater [1], Dugdale and MacDonald [2] or the free-volume theory of
Vashchenko and Zubarev [16] could be recovered if the vall,e of the exponent x were
chosen as 4/9, 2/3, or 8/9, respectively. Perhaps a better way of appreciating this
similarity is to compare, without ignoring the higher-order terms, the governing equations
for the historical models given by

(20)
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to that of the current model (with power-law lfIfunction), which satisfies

7

(21)

Those three historical models [1,2, 16] are given by eqn (20) when n takes on the values
0, 2/3, and 4/3, respectively. By comparison, the current model, eqn (21), for the case
where K = 1 and x = 2/3, differs from the Dugdale-MacDonald theory [eqn (20) with
n = 2/3] by only the presence of the first term. Also noted are strong similarities to the
other historical fOlms for alternate values of x.

Recall, at this stage, that the model given by eqns (16)-(19) was based on the
complementary solution to the Griineisen EOS, extended to encompass the functional
behavior of the so-called universal potential [14]. Thus, the striking similarity between
eqns (20) and (21) provided important additional support for the formulation of the
particular solution embodied in eqn (16), itself based upon eqns (11) and (12).

This special case of the current model, in which K = 1 and lfI~ V2l3, the author
deemed the "quasi-harmonic" case, and proceeded to study in further detail [11]. The
quasi-harmonic case was unique, in that the lattice potential, E, force, dE/dA, and

volumetric stiffness, d2EldA2, are all expressible solely in terms of the vibrational
frequency, OJ.

Denoting quasi-harmonic quantities as hatted (',) and treating, for consistency, A as
the specific lattice spacing, equal to the cube root of the specific volume, one may
integrate the quasi-harmonic function, I.{i = (A/to )V 213 , according to eqn (10), to obtain the
quasi-harmonic vibrational frequency as

(22)

Though not at all ,apparent, the author was able to show that this frequency, inserted into
the quasi-harmonic potential,

(23)

actually produces a parabolic (i,e., hannonic) potential well, Ec, in the limit as to
approaches zero (see Fig. 1). Harmonic limiting behavior was considered essential by
Dugdale and MacDonald [2] and in that regard, the current work was shown as supportive
of that tenet.

By contrast, however, the author explicitly showed [11] how the Dugdale
MacDonald relation relies on an assumed proportionality between volumetric otiffncss
associated with OJ,o!, and the characteristic vibrational stiffness associated with the
vibrational frequency, OJ. The author recognized and inferred that the current model
refutes this proportionality, explicitly stating that "the volumetric and vibrational
stiffnesses ... are not proportional." [11]

But how could this distinction arise? The assumed proportionality between OJ and
OJvo! was not only an intrinsic facet of the early models [1-3], but was explicitly assumed
by Brillouin [12] and more recently, as well, by Guinea et at. [17].

It was left to a subsequent transitional report [18] for the author to demonstrate this
distinction between OJvo! and OJ. As will be shown in the next section, the proportionality
of OJYo! and OJ is a direct consequence of lattice interactions confined to the nearest
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Figure 1. Normalized cold-compression energy vs. lattice spacing for the quasi-harmonic potential, with

reference Griineisen value as a parameter.

neighbors alone. And thus, any model which is constructed by way of nearest-neighbor
only interaCtions, going back to Slater [I], will as a consequence infer that mval - m.

Non-nearest neighbors
The key distinction between the author's model described by eqns (16)-(18) and the

preponderance of prior classical frequency-based EOS work [1-3, 12, 17] concerns an
assumed proportionality between the volumetric- and vibrational frequencies, mval and m,
that is intrinsic to the cited prior work. While the author's model was originally derived
through the use of thermodynamics and differential equations, and not through the use of
lattice mechanics, the need arose to resort to elements of lattice mechanics in order to help
refute this oft employed proportionality between mval and m.

This point was made [18] by the consideration of a simple I-D lattice, such as that
depicted in Fig. 2. Making the classical assumption that a given atom of interest (the test
atom) interacts with every other atom in the lattice by way of a pairwise potential, the net
force effect upon the test atom will arise from a summation of pairwise effects from every
other atom in the lattice.

Consider then, two respective deviations from the equilibrium lattice, as depicted in
Fig. 2: in one case, the deviation arising from an infinitesimal vibrational pulse of
magnitude fu that has just reached the test atom (a pulse implies, in this case, a fully
cyclical event which leaves the lattice in its original configuration following the pulse's
passage), and in the other case, an infinitesimal lattice expansion of amount d'A brought
about by an externally applied force increment flF. Denote the pairwise force interaction
between the test atom and any other atom by f, wherefwill naturally be a function of the
distance between the test atom and the other atom.

In the case of the vibrational pulse, the restoring force imparted to the displaced test
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Figure 2. A l-D lattice depicting the distinction between lattice vibration and expansion. As the test

atom is momentarily displaced Lix during a vibrational wave-pulse, the distance from it to every other

atom in the lattice is altered by Lix. In the case oflattice expansion by LlA. , the distance to the n'th atom
distant from the test atom is altered by a distance of no dA..

atom that results from the pair of atoms located directly on either side will be 2(dj7dx)A' Ax.
The contribution from the pair located at a nominal distance of 2A will be 2(dj7dx)n' Ax,
and so on, such that the quotient of the net restoring force AFvib to the Ax displacement of
the test atom will be

AFvib = 2[(df ) {df) {df 1+ ...J .Ax dx A dx n dX.A
(24)

This ratio AFvib/Ax, taken in the limit as dFvib/dx, represents the I-D vibrational stiffness
that resists the pulse disturbance described. We note and fully recognize the simplification
of treating this vibrational pulse as indicative of the complete vibrational spectrum. To a
simple order though, eqn (24) represents the stiffness associated with the vibrational
frequency m.

Turn now to the deviation engendered by the lattice expansion in Fig. 2,
characterized by AA and brought about by a uniform, externally-applied force increment
AF. Unlike the vibrational pulse, which is a non-equilibrium event, the expanded lattice is
in equilibrium with the external force increment AF. The test atom need not be on the
lattice surface, since a free-body force diagram may always be constructed in which the
net equilibrium force to one side of the test atom is balanced by the pairwise contributions
on the other side. While the change in the pairwise distance to the adjacent atom is dA, the
second atom from the test atom has been displaced by a distance of 2dA with respect to the
test atom, the third atom by 3dA-, and so on. Thus, summing the net pairwise- force
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changes resulting from the applied force increment dF, one obtains the force to extension
quotient as

M -l(dfJ +2(dfJ +3(df1 +8.A - dx" dx 2A dx h" ...
(25)

In the limit of an infinitesimal lattice extension, this ratio becomes dF/dA and represents
the volumetric stiffness associated with the volumetric frequency Wvol.

Comparing the forms of eqns (24) and (25) reveals that, iffis not linear in x (i.e., not
harmonic), the two stiffnesses and thus the two associated frequencies, can not be, in
general, proportional to each other. This is a key result! If for the sake of simplicity,
however, one were to confine the pairwise interactions to an atom's nearest neighbors
only, then the stiffness associated with the restoring force from the vibrational pulse, equal
to 2(dj7dx)", would indeed be proportional to the stiffness associated with the lattice
extension (i.e., volumetric) force, equal to (dj7dx)".

With this result, permitted now is the legitimate assertion of an EOS form in which
the volumetric and vibrational stiffnesses (and associated frequencies) are not
proportional. In the quasi-harmonic case, for example, the relationship turns out to be

(26)

as displayed in Fig. 3 by way of the associated stiffnesses. Furthermore, it can be asserted
that those historical models that have assumed a proportionality between Wvol and OJ have
done so by making an explicit or implicit assumption that either the lattice is strictly
harmonic or else the lattice interactions are confined to nearest neighbor interactions only.
Interestingly, Fig. 3 reveals that, for small excursions about the '0' condition where
w= Wo, an assumed proportionality between the vibrational and volumetric frequencies is

10

..",
dF/dA

(dF/dA)o

dF,jdx

(dF,'jh/dX)O

8

2

4

6

o

o 2 3

Figure 3. Comparison of vibrational and volumetric stiffnesses for quasi-harmonic potential.
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a fair assumption, even for the quasi-harmonic potential where it is not strictly true.
With this understanding, the author proceeded to generalize this approach to the

solution of3-D lattices [19, 20].

Summation-form EOS
The author endeavored to pursue, for a 3-D lattice, the implications of the result in

which the distinction between the volumetric and vibrational lattice stiffness was

demonstrated [19, 20]. Rather than starting with a force-based analysis, as done in the
preceding section to prove a point, energy was used as the starting basis, since the rules
governing potential fields are clear and unambiguous.

Let the pairwise potential field between two like atoms be given, as a function of
separation distance s, by 2&(s) such that a potential energy of magnitude E; may be
associated with each atom of the pair. Define &(s) relative to the infinite-separation
condition, so that E; approaches zero at infinite separation. With an infinitely large number
of these atoms, construct a hypothetical lattice with infinite interatomic separation, so that
the lattice's potential energy is zero. Systematically bringing the atoms of this lattice
together, while maintaining the relative proportions of interatomic separation, allows the
lattice structure to be maintained while lowering the interatomic separation from an
infinite value to an arbitrary finite value Il.

Consider one atom of this lattice as a "test atom" 0, and define it at the Cartesian
origin of a lattice-based coordinate system. The separation between aton 0 and another
atom located at lattice position ijk having the coordinates (x, y, z) = (Ai, Aj, Ak) is simply

(27)

The potential energy associated with 0, arising from its interactions with the rest of the
lattice atoms, is given as a function of Jl by

= = =

EpolA)= I I IE,
[=--00 j=--oo k=---oo

(28)

where we define &(0)= 0 to preclude an atom from contributing to its own potential.
While eqn (28) references a simple cubic lattice for descriptive convenience, a sum
involving the appropriate half-integers may be constructed to embody other lattices, such
as face-centered-cubic (FCC) and body-centered-cubic (BCC) structures. Epoe represents
the potential energy associated with atom 0, in other words, the specific energy of
compression, per unit atomic mass of the lattice.

In the ensuing discussion, let Jl, for consistency, be defined as the specific lattice
spacing, so that it may be set equal to the cube root of the specific volume, V. A lattice
force F may be defined, consistent with the physical interpretation of pressure across a
lattice face, as F = pc Jl2 = -(dEpot/dJl)/3. Eqn (28) may be differentiated to obtain the force
as a sum of d£ldJl terms, though the quantity d£ldJl must be expressed via the chain rule as
d£lds' ds/dJl. The first term in the chain is the negative ofthe pairwise force, -f, while the
second term, obtained by differentiating eqn (27), varies proportionately to the distance of
separation, in a manner wholly consistent with the discussion of the preceding section,
such that
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(29)

(30)

The derivative of F with respect to It may be taken after a similar fashion so as to obtain
the volumetric stiffness of the lattice as

dF 1 ~ ~ ~ S2 df-=-L L L2'-
dlt 3 j=~ j=_ k=~ It ds

Note that the evaluation of eqn (30) relied on the fact that d2s/dlt2 is identically zero since,
for a given ijk atom, s is linear with It. Eqn (30), therefore, provides a function dF/dlt that
is proportional to covi. Using the terminology of eqn (6), ~ = It has been asserted here, so
that ~A = I follows directly.

In composing the vibrational stiffness, the author chose to employ one longitudinal
and two transverse modes, combining them by way of 3/co3 = 1/COL3 + 2/COT3 [12]. In all
cases though, the individual modes were derived from the highest frequency wave pulse,
in which the stiffness resisting the pulse-displacement of a single plane of atoms was
ascertained. This process is the 3-D analogy of the single-atom vibrational-pulse
displacement described for the I-D lattice in the preceding section. Note that, by
considering the vibrational amplitudes as infinitesimal, the vibrational stiffness is modeled
as a function of It only; stiffness variations with vibrational amplitude are ignored
(whereas a true anharmonic spring stiffness will vary as well with vibrational amplitude).
This simplification is wholly consistent with a temperature-independent Griineisen
function, such that r = r(V).

In the case of the longitudinal pulse, the stiffness is calculated that resists the pulsed
motion of the x = 0 plane of atoms containing 0 by a displacement Llx in the -x direction,
allowing Llx to approach zero in the limit. In the case of the two modes involving a
transverse (i.e., shear) pulse, it is either the y = 0 or z = 0 plane of atoms which is
vibrationally displaced by Llx in the -x direction, for which the stiffness is calculated.

Again utilizing potential energy as the starting point, a vibrational restoration force
may be evaluated by obtaining dEpot/dx as a summation of all the individual contributions
of dE/dx. Like before, the chain rule is used to evaluate dE/dx as dE/ds' ds/dx. As in the
volumetric analysis, dE/ds is the negative of the pairwise force, -I Whereas eqn (29), for
ds/dlt, describes the motion relative to 0 from an incremental change in It, ds/dX in the
present case describes the motion relative to 0 arising from the vibrational pulse of a plane
of atoms containing O. It may be given as

dS/dx = xis = cosy (i:t 0), (31 )

where yis the direction cosine between the vector connecting 0 to the ijk position and the
vector of relative atomic motion (the x-axis). Like s, the quantity ywill be unique for each
ijk atom position. The i:t 0 exclusion pertains to the longitudinal pulse, in particular,
where the whole i = 0 plane of atoms is displaced and thus experiences zero displacement
with respect to 0. For the transverse pulses, the exclusion will be either j:t 0 or k:t 0
(which are actually identical cases because oflattice symmetry).

Unlike d2s/dlt2, which was identically zero in the calculation of the volumetric
stiffness, d2S/dx2 is not zero, since the distance from 0 to atom ijk does not vary linearly
with the magnitude of the vibrational displacement ~x. In particular,
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(32)

(33)

With this knowledge, the modal vibrational stiffness dFm/dX (where m represents a
particular vibrational mode), equal to d 2E/dX2 may be evaluated as

dF ~ ~ ~ [dlf f 'Jd: =j~j~k~ ds cos2y+-;sin2y ,

where the i i:- 0 exclusion applies for the longitudinal-stiffness mode dFL /dx, and the j i:- 0
restriction applies for the two (equal) transverse-stiffness modes dFrldx. The partial
derivatives, here, connote that y and z are held constant during the x vibrational
displacement.

Additionally, with yunaffected by changes in ?c, one may differentiate eqns (31) and
(32) with respect to ?cto obtain d/dA(ds/dx) = 0 and

~ d2s __ sin2y ds __ sin2y
dA dx2 - S2 dA - sA

(34)

With the use of these relations, the quantities d/dA(dFL/dX) and d/d?c(dFr/dx) may be
obtained, by differentiating eqn (33), as

d dFm _ 1 = =. = [ d2 f 2 (df f). 2 ]

-----I L I S-2 cos y+ --- sm y ,
dA dx A i~-= j~_= k~-= ds ds s

(35)

(36)

where the i i:- 0 restnctlOn applies for the longitudinal (m = L) mode and the j i:- 0
restriction applies to the transverse (m = T) modes. Eqns (33) and (35) will be essential in
the calculation of the Griineisen function.

To this stage, the quantities E, F, dF/d?c, dFL/dx, dFr/dx, d/d?c(dFJdX) and
d/d?c(dFrldX) may be obtained with the summations described. All the remaining
quantities of interest are algebraically obtainable in closed form. For example, since Oh

and OJr are proportional to the square root of the quantities dFL/dx and dFrldx

respectively, the aggregation relation 3/OJ3 = l/OJLJ + 2/OJl may be cast in terms of
vibrational stiffness to obtain

[ ]B
CJF'ib 3

- ~ = (-CJFLICJx)-Ji2+2( -CJFr/CJxrJi2

By differentiating eqn (36) with respect to A, the following relation may be acquired, in
terms of already calculated quantities:

(37)

Since the vibrational-stiffness dFyib/dX is proportional to OJ2, it follows from eqn (5), (36),
(37), and V = ?cJ that the Griineisen function is obtainable as

(38)
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The author was able to show, for the special case of a harmonic pairwise potentIal,
that r given by eqn (38) was identically zero as it should be [19]. Furthermore, one may
ascertain directly from eqn (33) that, for the harmonic case where dj7ds =j1s = ks, the
modal stiffness for the lattice i~ also a constant equal to ksn, where n is the number of
harmonic springs of stiffness ks attached to atom O. The current model is thus seen to pass
this common sense integrity test. For non-harmonic cases, a typical result is shown in
Fig. 4.

A practical implementation of the method requires a specification of a pairwise
potential, e. To this end, the author opted to adapt the H02 potential of Schulte and
Holzapfel [21]. Though not given asa pairwise potential, but rather expressed in (p}j
form, the H02 model can be re-expressed in force-distance rather than pressure-volume
format as

(39)

where the variable x here represents s/so, and the parameter a (constrained to a> 1)
governs the decay rate of the interaction. The energy potential, e, can be obtained by
integrating eqn (39) with respect to s, using either a packaged exponential-integral routine,
or by way of a closed-form fit offered by the author [19,22]. One way to picture the
influence of the decay parameter a is as follows: when a is very large, the interatomic
interactions decay rapidly over distance, so that the nearest neighbors' influence
predominates. The larger a becomes, the closer to a nearest-neighbor paradigm the model
becomes. By contrast, as a is decreased, approaching unity in the limit, the interactions
decay more slowly over distance, and increasingly larger numbers of distant atoms interact
in a mutual way.

In practice, the lattice summations can not be taken over an infinite lattice. As such,

Bee:
a= 2.5

2.0

1.5

1.0

0.5

0.0
0.0 0.5 1.0

NJ...o

1.5 2.0

Figure 4. The IjI and corresponding r functions for a Bee lattice with IX= 2.5, showing both Land T
components as well as the aggregated function.
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a suitably large radius Smax is specified to guarantee convergence, so that terms are included
in the summation if Sijk < Sma,' Results indicate typical values for Smax on the order of 8x to
llx the pairwise equilibrium distance So, with the larger values corresponding to lower
interaction-decay rates a. While the relative value of pairwise-to-lattice equilibrium
spacing So 1k was found to vary with decay parameter a and lattice structure, the trend was
that, as a diminished towards its lower limit of unity, the value of so/~ would
monotonically increase significantly above unity. If one then considers such a lattice,
evaluated under significant compression (i.e., k1A> 1), the number of atoms in the
summation convergence zone is observed to vary as [(smaxlso)(so/~)(kIA)]3

(~4Jr/3' [10' 2· 2p for example), and represents a surprisingly large number of atoms
(103-105) that can significantly affect the volumetric and vibrational response of the test
atomO.

Other results were obtained, when exploring the parameter space of this summation
form EOS. It was observed that, while the summed lattice potential also followed, to a
remarkable degree, the form of the H02 potential, a disparity was seen between the
normalized lattice stiffness as compared to the corresponding pairwise stiffness. The
lattice stiffness was always less than the corresponding pairwise stiffness, though the two
stiffnesses approached each other as a grew large (i.e., as the nearest-neighbor paradigm
was approached).

As already shown with the equations, the summation results corroborate the
distinction between the volumetric and vibrational stiffnesses, and thus the distinction
between m and mvol. By definition, the volumetric stiffness will experience its one and
only zero at that value of A> k where the lattice energy potential experiences an
inflection change. The zero of the vibrational stiffness, in contrast, was always observed
at a value of A larger than that of the volumetric stiffness, regardless of lattice
configuration.

Another result in the exploration of the summation EOS concerned the limiting
behavior, for small A, of rand rvoJ, the latter needing a definition. In the manner directly
analogous to eqn (5), a volumetric Griineisen function may be defined as

(40)

As an aside, when mvi is taken proportional to d2EldA2, as in the current approach, this
quantity Col was shown [11] to exactly equal the Dugdale-MacDonald [2] definition ofr.
By contrast, the author showed [19] that the B' quantity frequently used by many authors
in contemporary EOS work, equal to the pressure derivative of the bulk modulus,
B' = (dBldp )T, is in fact related to the Slater [1] definition of r by r Slater = -1/6 + B'/2.

Returning to the result of the summation-EOS model exploration, it was observed,
with the H02 form as the pairwise potential in the summation EOS, that the lattice appears
always, at large compression, to approach a limiting r value of 2/3, even though the
volumetric Co! does not approach a common limit. This result was observed regardless of
the decay parameter a. The same limit, however, is not produced when pairwise potential
forms other than the H02 potential are tested in the model framework.

Finally, a few words are in order regarding the incompleteness of a frequency
spectrum characterized by only three high-frequency modes. The hypothetical vibrational
pulse utilized in this model (in which a single plane of atoms is vibration ally displaced)
represents a waveform capturing only the highest frequency harmonic at which the lattice
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is capable of oscillating. It is perhaps this incompleteness that is responsible for the f
values of Fig. 4 appearing slightly lower than expected.

Another shortcoming of the current approach is the anisotropic bias of the
vibrational stiffness. Because the vibrational stiffness is calculated for pulses aligned with
very specific lattice-coordinate directions, the resulting stiffnesses inherently depict
particular anisotropic biases, since they are not averaged over alternate lattice orientations.

These shortcomings are not debilitating, however. Historically, Einstein's specific
heat work, for simplicity, actually assumed a single frequency at which the lattice
oscillated. The work of Debye required the assumption of a particular vibrational
spectrum. Griineisen didn't need to assume a form on the spectrum, but required that the
response of that spectrum to volumetric changes was similar for all frequencies. The
assumptions of the current work place it, essentially, in this latter category. As long as the
uncalculated frequencies respond to volumetric changes in a manner proportional to the
response of the known mode, the calculation of the Griineisen function, to which this work
is directed, will be unaffected.

Though a more satisfying remedy was not computationally pursued [19], the author,
in recognizing these shortcomings, proposed several remedies. The obvious choice to
remedy the incomplete spectrum is to aggregate a characteristic frequency from additional
modal components, specifically some low-frequency modes, in addition to the high
frequency components already obtained. For example, the lowest frequency response
modes would arise from the stiffnesses that resist a uniaxial strain field (for the
longitudinal mode) and a pure shear field (for the transverse modes).

Frequency-based EOS
There were two primary goals in developing the summation-form EaS of the

preceding section. The first was to quantitatively demonstrate the distinction between the
volumetric and vibrational stiffnesses in a 3-D lattice. The first goal has been amply
demonstrated in the preceding chapter. The second goal was to see if a quantitative
evaluation of that frequency distinction could provide ancillary support for the original
EaS form derived by the author, given by eqns (16)-(19).

The pursuit of that second goal [19, 20] is the subject of this section's presentation.
The approach adopted was to divide the problem into its mechanical (F) and thermal (r)
parts, and to determine if the essence of the triple-summation EaS results of the preceding
section could be captured in analytical formulations. In light of the desired goal of
achieving a frequency-based EaS, fitting fonns that were expressed in terms of frequency
were examined.

Extremely good success was obtained with the following fit [19], over a wide range
of stiffnesses (a) and lattice spacings (N~):

(w/wolln(w/wo)

3fo(NAo)2
(41)

The form, regardless of fo and parameter {3,provides slope compatibility in the force at ~.
However, {3may be selected to guarantee curvature compatibility in the lattice force, as

(42)
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An illustration of the quality of the eqn (41) fit is shown in Fig. 5. A larger a = 5 value
was selected for the figure to highlight the small, but noticeable, disparity between the
summation form and eqn (41). As a is lowered, the quality of the fit to the summation
form is improved, such that the model and fit curves become indistinguishable. All
parameters in this fit are ambient-state material constants.

Turning to the thermal part of the problem, another frequency-based correlation was
noted [19], that essentially relates r to OJ:

(43)

where f.1 is a parameter that can be fitted for a given lattice configuration and interaction
decay rate. Fig. 6 shows an example of the correlation. Invariably, f.1 is in the vicinity of
0.5, rising slightly for BCC lattices as a increases, and lowering slightly for FCC lattices.

Differentiating eqn (43) and dividing the result by eqn (43) itself allows for the
elimination of OJ, to obtain

f.1=4/3·1/lN -d1f//dV . (44)

Eqn (44) serves two purposes. First, rather than requiring a fit of {l based on compression
data, it provides the means to evaluate f.1 directly in terms of known material parameters, if
evaluated at the Va state. Secondly, it allows for a more stringent test of the correlation, as
it allows comparison, not of the terms of the correlation, but of their derivatives. Fig. 7
shows, for the lattice of Fig. 6, a comparison of the terms composing eqn (44). If the
correlation of eqn (43) holds, then the dl{f/dV curve should overlay the 4/3' l{f/V - f.1 curve.
The correlation is seen to hold over the compressive domain and only begins to diverge at
larger lattice spacing, near and beyond the critical value of lattice spacing, call it Astab,
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Figure 5. Comparison of summation-form EOS to eqn (41) for calculation of lattice force, F, for face
centered-cubic lattice with a= 5.
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where dl/lldA changes sign. The use of eqn (44), evaluated at the Va state, as a means to
obtain fl from extant material properties means, in terms of Fig. 7, that fl is selected such
that the dl/lldV curve and the 413· l/I/V - fl curve are forced to intersect at NAn equal to
unity. When such a technique is employed on the BCC a= 2.5 lattice of Fig. 7, the
resulting fl is not 0.5, but rather 0.538.
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Figure 7. Comparison of tenns comprising the derivative of the thermal correlation. Note that dljl/dV

equals (dljl/dA)/(3A').
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The differential equation, given by eqn (44), may be solved to yield the IjI (i.e., the
r) functional form corresponding to the empirical correlation form of eqn (43). It is

(45)

Eqn (45) approximates dljl/dVas linear in A. (compare with Fig. 7). As such, r varies as
1/(3f1- b,1.), where b is a constant. If, indeed, f1exactly equals 0.5, then the limiting high
compression value of r from the correlation would exactly equal 2/3, as already observed
from the summation-form EOS.

Eqn (10) may be integrated, in light of eqn (45), to recover the functional form for
the characteristic lattice frequency associated with the correlation form of eqn (43). The
result is

(46)

As a side note, the denoting of lattice spacing where 1jI' = 0 by ,1.stab makes reference back
to earlier thermodynamic stability work of the author [8], in which it was shown that
1jI' > 0 would be required to ensure that (CJE/aV)p remain positive at elevated temperatures.
Alternatively, 1jI' < 0, while permitted, demands a phase change at elevated temperature,
which is exactly the alternative expected for a highly expanded lattice state. A more
immutable stability requirement, 1jI' > -1, is required [7] to prevent a compressive shock
from producing a net drop in pressure. Eqn (45) will always satisfy this requirement for
positive w, as long as f1 < 1.

The analytical fit of the mechanical behavior of the lattice, eqn (41) is a function of
both frequency and lattice spacing. As such, it can not be integrated for the lattice
potential without first specifying the manner in which w is coupled to A.. However, by
beginning with eqn (41) and substituting the correlation given by eqn (43) into it [in effect,
multiplying by unity in the form of (w/Wo}/1(NAo)4(IjIO/IjI)], one may obtain

(47)

Recalling that F has been defined as pc A.:, a comparison of eqn (47) to the earlier derived
eqn (17) reveals identical functional forms, with but one exception: in eqn (17), the
exponent is K, whereas in eqn (47), it is f1 + 13. Whereas K, evaluated by eqn (19), tended
to fall in the 2/3 to 4/3 range for actual materials, values of f1 + 13 tend to fall in the 4/3 to
5/3 range for the same materials. That two vastly different approaches to the same

problem would yield nearly identical functional forms was both startling and reassuring.
A source of the discrepancy has already been alluded to. Namely, in the derivation

of eqns (16)-(19), it had been implicitly assumed that w would asymptote to zero only as
the lattice spacing became infinite (i.e., that Ee approaches Eb as wapproaches zero).
Figs. 6 and 7, for example, serve to immediately discount that notion, as the rapid
approach of IjIto zero (at A. equal to 1.463Ao for the BCC lattice with a of 2.5) corresponds
to a very non-asymptotic approach of OJ to zero. Beyond this lattice spacing, the concept
of "lattice" frequency makes no sense since, as the lattice stiffness changes sign, the
restoring forces that keep the lattice intact becomes physically unstable. A highly
expanded lattice beyond this point is a marginally stable academic construct that can not
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exist in the real world. In the real world, the crystalline material would melt or otherwise
change structure in order to reestablish a stable configuration.

If one: denotes the sum 11+ [3 by 1(; employs the relation F =pc A?; equivalently
expresses the ~ lattice force gradient in terms of the bulk modulus as
-~2(dF/dA)o = 3BoVo; and references the energy zero to the equilibrium state of the lattice
such that Ec = EPOI + Eb, then the lattice cold pressure may be expressed from eqn (47) and
the cold energy (from the integration of pc· dV) as

(48)

(49)

Lattice spacing, per se, has been eliminated as an independent variable! In these
equations, the quantity BoVo may be replaced by the square of the bulk sound speed, C02,

while 1(, from eqns (42) and (44), is determined as

(50)

The model, embodied in eqns (48) and (49), may be compared directly with the
summation-form EOS. Rather than using fitted forms for ljI, such as eqns (45) and (46),
the actual values for ljI and co obtained from the summation-form EOS win be used
directly in eqns (48) and (49) for the comparisons. In this manner, the accuracy of
eqns (48) and (49) will be measured directly against the summation-form EOS, and not
rely upon arbitrarily imposed fitting forms.

Figs. 8 and 9 show a representative comparison, for compressed and expanded
states, for FCC lattices of decay parameter a = 2 and 5, respectively. excellent matches
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Figure 8. Comparison of lattice force and energy for the summation-form EOS and analytical forms, for
an FCC lattice with a = 2 decay parameter, (a) under compression, and (b) in expansion.
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Figure 9. Comparison of lattice force and energy for the summation-form EOS and analytical forms, for

an FCC lattice with a= 5 decay parameter, (a) under compression, and (b) in expansion.

are obtained over a huge range of compression. In expansion, the match is excellent out to
the value of lattice spacing denoted as Astab, corresponding to the maximum in lfI. As
lattice spacing increases to the point where w becomes zero, the analytical forms rapidly
diverge from the summation-form of the EOS. Over a large practical domain of A,
however, the analytical form is indistinguishable from the summation-form EOS. This
result holds for other cubic lattice structures as well (e.g., BeC).

Interestingly, the author found [19], from exploring the parameter space of the
summation form EOS, that K of eqn (19) and K of eqn (50) can, in fact, approach a
conunon value of about 1.26, but only if the lattice interaction-decay coefficient a
becomes very small (approaching unity). Since eqn (19) was predicated upon the
generally false notion that wapproached zero only as the binding energy was reached (i.e.,
at large lattice spacing), one might infer, for those cases where K and K are of similar
magnitude, that Astab will occur at a large lattice spacing and that eqns (47) and (49) will
continue to provide an excellent match to the summation-form EOS well beyond the
minima in the energy and force curves. Fig. 10 validates this concept for the special case
when a remains small (equal to 1.1 in this example). In this case, both Astab and w= 0 do
not occur until beyond )J Ao > 7.

Since the current modeling, in assuming the vibrational stiffness independent of
vibrational amplitude, relies on r = reV), the results may be combined and cast in the
Griineisen-equation-of-state form of eqn (7). Using the cold-curve defined by eqns (48)
and (49) as the reference curve gives the following equation of state [19,20]:

p1fI- E = (Co J2 {[(w/wo r -1] + K(K -l)(w/wo)" In(w/wo)} (51)roK

where K is defined by eqn (50). If the constant K were, instead, to take on the value K,
eqn (51) would reduce identically to eqn (18), and for the reasons already discussed.
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Figure 10. Comparison oflattice force and energy for the summation-form EOS and analytical forms, for

an FCC lattice with a = 1.1 decay parameter.

Comparison to data
It is desired to compare experimental data from various thermodynamic loading

paths to the EOS model embodied in eqn (51). While the summation-form EOS requires
only the specification of a pairwise potential in order to compute the lattice EOS, eqn (51)
will require alternative data since the pairwise potential for an arbitrary crystalline solid is
not known.

Since eqn (51) is not given as a function of Ie or V (the variables by which
experimental data are measured), the independent variable of the EOS, ill, must be related
back to them to accomplish the experimental comparison. The simplest approach is to
assume the validity of eqn (45), which amounts to assuming a functional form for r. The
real behavior of vris undoubtedly more complicated, and one could expect an improved fit
to data by customizing a fit to vr for each given case. Nonetheless, rather than adopting a
customized vr function to "fit" compression data, the assumption of eqn (45) will provide
immediate feedback as to whether the model is properly formulated.

Beyond this assumption, all required parameters are material constants which can,
theoretically, be obtained from material data at the Vo state. They include Bo (or Co), Vo,

ro, ColO, and (dvr/dV)o [or (drldV)o]. With these parameters, /( may be computed with
eqn (50) and 11with eqn (44) [evaluated at the Vo state as 4/(3ro)-(dvr/dV)0]. To be fair,
however, it is difficult enough trying to obtain reliable material data for r, much less its
derivative (akin to evaluating B"). Thus, the specification of (dvr/dV)o, in effect, amounts
to a "fit" of the parameter 11. While the parameter ColO may be estimated from B' data as
ColO = -1/2 + Bo'/2, we choose instead to estimate it in the vicinity of 1]/2.6, where 1] is the
anharmonicity parameter of Rose et al. [14] that appears in eqn (13), and is a measure of
the curvature in the energy potential.

With all the parameters obtainable or estimable, the comparison of theory and data
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may proceed. Available experimental data is generally of two varieties: cold compression
and shock compression data. Cold-compression data may be compared directly with
eqn (48), representing mechanical compression in the absence of significant thermal
effects. The shock Hugoniot that results from shock compression, by contrast, is a
function of both the mechanical and the thermal properties of the lattice. It may be
obtained by eliminating E from eqn (51) by way of the Rankine-Hugoniot shock-energy
relation:

E-Eo =(Po + p)(Vo -V)/2 , (52)

which governs the internal energy across a shock wave. For the reference Hugoniot
originating from the equilibrium lattice condition, Eo and po are both zero.

The quality of the model/data match will test not only eqn (41), but also the
observed correlation of eqn (43), both of which have fed into the formulation of eqns (48),
(49) and, ultimately, (51). Comparisons to silver, aluminum, copper, and stainless steel
are shown in Figs. 11-14, with the corresponding parameters given in Table 1.

The comparisons to both cold-compression and shock-Hugoniot data for these
representative materials are very good to a number of megabars of compression.

Furthermore, the application of a more general form on ljI, as opposed to the
assumed form of eqn (45), can further improve the correlation to data. The purpose,
however, in retaining the simplified eqn (45) merely demonstrates the general utility of the
method and approach. Further refinements, with the intent to improve correlation to data,
would at this time serve only to obfuscate the simplicity of this static-atomic paradigm of
lattice vibration .
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megabars. Note that cold-compression data are filled symbols and Hugoniot data are open symbols.
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Table 1. Material Parameters for Model Evaluation

CoIIVo10rvo'O(d1Jl!dV)o
(m/s)

(kg/m3)

Ag

3221104902.222.290.10
Al

518927002.031.84-0.06
Cu

399589302.022.100.14
St. Steel

457]78961.812.000.19
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Figure 14. Cold-compression and shock-Hugoniot curves for stainless steel to 4 megabars. Note that

cold-compression data are filled symbols and Hugoniot data are open symbols.

Conclusion

This article details a progression of work on classical equation-of-state
methodology, that has occurred over the span of a decade. While the focus and the
method of attack show significant breadth, results consistently point in a common
direction. Namely, those results indicate: (a) that the mechanical and thermal components
of material behavior are tightly coupled; (b) that a characteristic lattice frequency is the
key thermo mechanical linkage variable, fully consistent with historical work in the field;
(c) that the frequency-based EOS currently offered, though derived by different means, is
a natural outgrowth of the historical work of Slater [1], Dugdale and MacDonald [2) and
others [3, 16]; (d) that the disparity between what the author calls "volumetric" and
"vibrational" lattice stiffness arises naturally when non-nearest-neighbor interactions are
accounted for; and finally, (e) that the frequency-based equation-of-state form, given by
eqn (51) [and similarly by eqn (18)] can be arrived at using two completely different
solution methodologies [13, 19].

The EOS of eqn (51) does not presuppose a functional form on the characteristic
frequency, OJ, in order to capture the behavior of the summation-form EOS. However,
such a form is, to the first order, suggested by the correlation of eqn (43), noted from the
application of the summation-form EOS. That correlation translates into an OJ form given
by eqn (46) and a corresponding model parameter /( given by eqn (50). With the use of
the current EOS, eqn (51), and assuming the OJ form of eqn (46), material (p-V-E)
behavior is described with five measurable ambient-state material constants, as given in
Table 1. Until such time, however, that the material parameter (dlfl/dV)o may be measured
with greater accuracy, this parameter will remain something of a fitted constant.

Significantly, that both cold- and shock-compression data may be simultaneously fit
is indicative of the general suitability of the model form. For it is impossible to vary a
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model parameter to independently fit both of these curves. The model exhibits tightly
coupled thermomechanical behavior, and any attempt to arbitrarily select a parameter
value to,fit the cold curve will alter the Griineisen functional behavior (thus affecting the
Hugoniot), and vice-versa.

The classical methods espoused in this work may seem quaint by comparison to
modem quantum methods. While limited, perhaps, to EOS calculations in thermodynamic
regimes where electronic effects do not exert overarching influence, the derivation of an
analytical closed-form thermomechanically coupled equation of state for solids
nonetheless represents an achievement of some utility.
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  RALSTON ALBERTA TOJ 2NO 
  RALSTON 
  CANADA 
 

 1 DEFENCE RSRCH ESTAB SUFFIELD 
  C WEICKERT 
  BOX 4000 MEDICINE HAT 
  ALBERTA TIA 8K6 
  CANADA 
 
 1 DEFENCE RSRCH ESTAB 
  VALCARTIER 
  ARMAMENTS DIV 
  R DELAGRAVE 
  2459 PIE X1 BLVD N 
  PO BOX 8800 
  CORCELETTE QUEBEC GOA 1R0 
  CANADA 
 
 1 UNIV OF GUELPH 
  PHYSICS DEPT 
  C G GRAY 
  GUELPH ONTARIO 
  N1G 2W1 
  CANADA 
 
 1 CEA 
  R CHERET 
  CEDEX 15 
  313 33 RUE DE LA FEDERATION 
  PARIS 75752 
  FRANCE 
 
 1 CEA/CESTA 
  A GEILLE 
  BOX 2 LE BARP 33114 
  FRANCE 
 
 5 CENTRE D’ETUDES DE GRAMAT 
  C LOUPIAS 
  P OUTREBON 
  J CAGNOUX 
  C GALLIC 
  J TRANCHET 
  GRAMAT 46500 
  FRANCE 
 
 1 DAT ETBS CETAM 
  C ALTMAYER 
  ROUTE DE GUERRY BOURGES 
  18015 
  FRANCE 
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 1 FRENCH GERMAN RSRCH INST 
  P-Y CHANTERET 
  CEDEX 12 RUE DE L’INDUSTRIE 
  BP 301 
  F68301 SAINT-LOUIS 
  FRANCE 
 
 5 FRENCH GERMAN RSRCH INST 
  H-J ERNST 
  F JAMET 
  P LEHMANN 
  K HOOG 
  H F LEHR 
  CEDEX 5 5 RUE DU GENERAL 
  CASSAGNOU 
  SAINT LOUIS 68301 
  FRANCE 
 
 1 LABORATOIRE DE TECHNOLOGIE 
  DES SURFACES 
  ECOLE CENTRALE DE LYON 
  P VINET 
  BP 163 
  69131 ECULLY CEDEX 
  FRANCE 
 
 1 CONDAT 
  J KIERMEIR 
  MAXIMILIANSTR 28 
  8069 SCHEYERN FERNHAG 
  GERMANY 
 
 1 DIEHL GBMH AND CO 
  M SCHILDKNECHT 
  FISCHBACHSTRASSE 16 
  D 90552 ROETBENBACH AD 
  PEGNITZ 
  GERMANY 
 
 4 ERNST MACH INSTITUT 
  V HOHLER 
  E SCHMOLINSKE 
  E SCHNEIDER 
  K THOMA 
  ECKERSTRASSE 4 
  D-7800 FREIBURG I BR 791 4 
  GERMANY 
 
 1 W B HOLZAPFEL 
  MAERCHENRING 56 
  D76199 KARLSRUHE 
  GERMANY 

 3 FRAUNHOFER INSTITUT FUER 
  KURZZEITDYNAMIK 
  ERNST MACH INSTITUT 
  H ROTHENHAEUSLER 
  H SENF 
  E STRASSBURGER 
  KLINGELBERG 1 
  D79588 EFRINGEN-KIRCHEN 
  GERMANY 
 
 3 FRENCH GERMAN RSRCH INST 
  G WEIHRAUCH 
  R HUNKLER 
  E WOLLMANN 
  POSTFACH 1260 
  WEIL AM RHEIN D-79574 
  GERMANY 
 
 2 IABG 
  M BORRMANN 
  H G DORSCH 
  EINSTEINSTRASSE 20 
  D 8012 OTTOBRUN B MUENCHEN 
  GERMANY 
 
 1 INGENIEURBUERO DEISENROTH 
  AUF DE HARDT 33 35 
  D5204 LOHMAR 1 
  GERMANY 
 
 1 NORDMETALL GMBH 
  L W MEYER 
  EIBENBERG 
  EINSIEDLER STR 18 H 
  D-09235 BURKHARDTSDORF 
  GERMANY 
 
 2 TU CHEMNITZ 
  L W MEYER (X2) 
  FAKULTAET FUER MASCHINENBAU 
  LEHRSTUHL WERKSTOFFE DES 
  MASCHINENBAUS 
  D-09107 CHEMNITZ 
  GERMANY 
 
 1 TU MUENCHEN 
  E IGENBERGS 
  ARCISSTRASSE 21 
  8000 MUENCHEN 2 
  GERMANY 
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 1 BHABHA ATOMIC RSRCH 
  CENTRE 
  HIGH PRESSURE PHYSICS DIV 
  N SURESH 
  TROMBAY BOMBAY 400 085 
  INDIA 
 
 1 NATIONAL GEOPHYSICAL 
  RSRCH INST 
  G PARTHASARATHY 
  HYDERABAD-500 007 (A. P.) 
  INDIA 
 
 1 UNIV OF ROORKEE 
  DEPT OF PHYSICS 
  N DASS 
  ROORKEE-247 667 
  INDIA 
 
 5 RAFAEL BALLISTICS CTR 
  E DEKEL 
  Y PARTOM 
  G ROSENBERG 
  Z ROSENBERG 
  Y YESHURUN 
  PO BOX 2250 
  HAIFA 31021 
  ISRAEL 
 
 1 SOREQ NUCLEAR RSRCH 
  CENTRE 
  ISRAEL ATOMIC ENERGY 
  COMMISSION 
  Z JAEGER 
  81800 YAVNE 
  ISRAEL 
 
 1 ESTEC CS 
  D CASWELL 
  BOX 200 NOORDWIJK 
  2200 AG 
  NETHERLANDS 
 
 2 EUROPEAN SPACE AGENCY ESTEC 
  L BERTHOUD 
  M LAMBERT 
  POSTBUS BOX 299 NOORDWIJK 
  NL2200 AG 
  NETHERLANDS 
 

 2 PRINS MAURITS LAB 
  H J REITSMA 
  E VAN RIET 
  TNO BOX 45 
  RIJSWIJK 2280AA 
  NETHERLANDS 
 
 1 TNO DEFENSE, SECURITY AND 
  SAFETY 
  R ISSELSTEIN 
  PO BOX 96864 
  THE HAGUE 2509JG 
  THE NETHERLANDS 
 
 1 ROYAL NETHERLANDS ARMY 
  J HOENEVELD 
  V D BURCHLAAN 31 
  PO BOX 90822 
  2509 LS THE HAGUE 
  NETHERLANDS 
 
 1 INST OF PHYSICS 
  SILESIAN TECHNICAL UNIV 
  E SOCZKIEWICZ 
  44-100 GLIWICE 
  UL. KRZYWOUSTEGO 2 
  POLAND 
 
 1 INST OF CHEMICAL PHYSICS 
  A YU DOLGOBORODOV 
  KOSYGIN ST 4 V 334 
  MOSCOW 
  RUSSIA 
 
 4 INST OF CHEMICAL PHYSICS 
  RUSSIAN ACADEMY OF SCIENCES 
  G I KANEL 
  A M MOLODETS 
  S V RAZORENOV 
  A V UTKIN 
  142432 CHERNOGOLOVKA 
  MOSCOW REGION 
  RUSSIA 
 
 1 INST OF EARTHS CRUST 
  P I DOROGOKUPETS 
  664033 IRKUTSK 
  RUSSIA 
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 3 INST OF MECHL ENGRG 
  PROBLEMS 
  V BULATOV 
  D INDEITSEV 
  Y MESCHERYAKOV 
  BOLSHOY, 61, V.O. 
  ST PETERSBURG 199178 
  RUSSIA 
 
 1 INST OF MINEROLOGY & 
  PETROGRAPHY 
  V A DREBUSHCHAK 
  UNIVERSITETSKI PROSPEKT, 3 
  630090 NOVOSIBIRSK 
  RUSSIA 
 
 2 IOFFE PHYSICO TECHNICAL 
  INST DENSE PLASMA 
  DYNAMICS LAB 
  E M DROBYSHEVSKI 
  A KOZHUSHKO 
  ST PETERSBURG 194021 
  RUSSIA 
 
 1 IPE RAS 
  A A BOGOMAZ 
  DVORTSOVAIA NAB 18 
  ST PETERSBURG 
  RUSSIA 
 
 2 LAVRENTYEV INST 
  HYDRODYNAMICS 
  L A MERZHIEVSKY 
  V V SILVESTROV 
  630090 NOVOSIBIRSK 
  RUSSIA 
 
 1 MOSCOW INST OF PHYSICS & TECH 
  S V UTYUZHNIKOV 
  DEPT OF COMPTNL MATH 
  DOLGOPRUDNY 1471700 
  RUSSIA 
 
 1 RSRCH INST OF MECHS 
  NIZHNIY NOVGOROD STATE UNIV 
  A SADYRIN 
  P R GAYARINA 23 KORP 6 
  NIZHNIY NOVGOROD 603600 
  RUSSIA 

 2 RUSSIAN FEDERAL NUCLEAR 
  CTR - VNIIEF 
  L F GUDARENKO 
  R F TRUNIN 
  MIRA AVE 37 
  SAROV 607190 
  RUSSIA 
 
 1 ST PETERSBURG STATE  
  TECHNICAL UNIV 
  FACULTY OF PHYS AND MECHS 
  DEPT OF THEORETICAL MECHS 
  A M KRIVTSOV 
  POLITECHNICHESKAYA STREET 29 
  195251 ST-PETERSBURG 
  RUSSIA 
 
 1 SAMARA STATE AEROSPACE UNIV 
  L G LUKASHEV 
  SAMARA 
  RUSSIA 
 
 1 TOMSK STATE UNIV 
  A G GERASIMOV 
  5-TH ARMY ST 29-61 
  TOMSK 634024 
  RUSSIA 
 
 5 DEPARTMENTO DE QUIMICA 
  FISICA I FACULTAD DE CIENCIAS 
  QUIMICAS 
  UNIVERSIDAD COMPLUTENSE DE 
  MADRID 
  V G BAONZA 
  M TARAVILLO 
  J E F RUBIO 
  J NUNEZ 
  M CACERES 
  28040 MADRID 
  SPAIN 
 
 1 UNIVERSIDAD DE CANTABRIA 
  FACULTAD DE CIENCIAS 
  DEPARTMENTO DE FISICA 
  APLICADA 
  J AMOROS 
  AVDA DE LOS CASTROS S/N 
  39005 SANTANDER 
  SPAIN 
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 1 CARLOS III UNIV OF MADRID 
  C NAVARRO 
  ESCUELA POLITEENICA SUPERIOR 
  C/. BUTARQUE 15 
  28911 LEGANES MADRID 
  SPAIN 
 
 1 UNIVERSIDAD DE OVIEDO 
  FACULTAD DE QUIMICA 
  DEPARTMENTO DE QUIMICA 
  FISICA Y ANALITICA 
  E FRANCISCO 
  AVENIDA JULIAN CLAVERIA S/N 
  33006 - OVIEDO 
  SPAIN 
 
 1 DYNAMEC RSRCH AB 
  A PERSSON 
  PO BOX 201 
  SE-15123 SÖDERTÄLJE 
  SWEDEN 
 
 7 FOI 
  SWEDISH DEFENCE RSRCH 
  AGENCY 
  GRINDSJON RSRCH CENTRE 
  L GUNNAR OLSSON 
  B JANZON 
  G WIJK 
  R HOLMLIN 
  C LAMNEVIK 
  L FAST 
  M JACOB 
  SE-14725 TUMBA 
  SWEDEN 
 
 2 SWEDISH DEFENCE RSRCH ESTAB 
  DIV OF MATERIALS 
  S J SAVAGE 
  J ERIKSON 
  S-17290 STOCKHOLM 
  SWEDEN 
 
 2 AWE 
  M GERMAN 
  W HARRISON 
  FOULNESS ESSEX SS3 9XE 
  UNITED KINGDOM 
 

 5 DERA 
  I CULLIS 
  J P CURTIS Q13 
  A HART Q13 
  K COWAN Q13 
  M FIRTH R31 
  FORT HALSTEAD 
  SEVENOAKS KENT TN14 7BP 
  UNITED KINGDOM 
 
 1 UK MINISTRY OF DEFENCE 
  G J CAMBRAY 
  CBDE PORTON DOWN SALISBURY 
  WITTSHIRE SPR 0JQ 
  UNITED KINGDOM 
 
 1 K TSEMBELIS 
  SHOCK PHYSICS GROUP 
  CAVENDISH LAB 
  PHYSICS & CHEMISTRY OF SOLIDS 
  UNIV OF CAMBRIDGE 
  CAMBRIDGE CB3 0HE 
  UNITED KINGDOM 
 
 1 L VOCADLO 
  DEPT EARTH SCIENCES 
  UNIV COLLEGE LONDON 
  GOWER ST 
  LONDON WC1E 6BT 
  UNITED KINGDOM 
 
 7 INST FOR PROBLEMS IN 
  MATERIALS SCIENCE 
  S FIRSTOV 
  B GALANOV 
  O GRIGORIEV 
  V KARTUZOV 
  V KOVTUN 
  Y MILMAN 
  V TREFILOV 
  3 KRHYZHANOVSKY STR 
  252142 KIEV-142 
  UKRAINE 
 
 1 INST FOR PROBLEMS OF STRENGTH 
  G STEPANOV 
  TIMIRYAZEVSKAYU STR 2 
  252014 KIEV 
  UKRAINE 
 
 


